Step of Proof: bij_imp_exists_inv
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
bij
imp
exists
inv
:
A
,
B
:Type,
f
:(
A
B
). Bij(
A
;
B
;
f
)
(
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
))
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
f
:
A
B
C1:
4. Bij(
A
;
B
;
f
)
C1:
g
:
B
A
. InvFuns(
A
;
B
;
f
;
g
)
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
biject
wf
origin